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TimeTime--resolved Fluorescence Spectroscopyresolved Fluorescence Spectroscopy

The time resolved fluorescence spectroscopy is a very important experimental tool to study the 
complex biomolecular objects and systems, including liquid crystals, membranes, proteins, DNA, etc. This 
method provide detailed information about the structure and dynamic of those systems [1]. The analysis of 
spectroscopic data may be complex because of several reasons: there could be a number of unknown 
parameters in an experimental system; almost all dependencies between them and the processes taking 
place are non-linear; fluorescence data are distorted by noises and inaccuracies of a registration system. 
These facts impel to analyze experimental data via the multi-parametric optimization approach (fitting) [2]. 
For the successful application of the fitting procedure, the selected model of fluorescence must be an 
adequate and the initial estimation for its parameters should be sufficiently good. Consequently, the 
tasks of model recognition and initial estimations arise. This problems belong to the “inverse problems”
and therefore their solution is unstable and very much noise sensitive.
Artificial neural networks (ANN) are well-known for their robustness, noise stability and ability to 
approximate any smooth function. Therefore it was decided to test their applicability to the problems of 
model selection and initial estimations.

IntroductionIntroduction

GoalGoal
To develop a noiseTo develop a noise--stable neural network based algorithms for the model selection stable neural network based algorithms for the model selection 

(recognition) and preliminary fluorescence data analysis (parame(recognition) and preliminary fluorescence data analysis (parameter extraction).ter extraction).

ObjectivesObjectives
Development of the preprocessing scheme for reduction of time-resolved fluorescence data
Selection of the ANN structure
Demonstration the possibility of the fluorescence model recognition by ANN
Demonstration the possibility of the initial estimation by ANN



The fluorescence decay of a molecular ensemble depends on 
lifetimes of fluorescent molecules and interactions between them. 
For the simplest case of non-interacting mixture of fluorophores
with different lifetimes the decay curve can be expressed as a 
sum of exponents (Eq 1). In the case of Förster type of energy 
transfer between molecules the fluorescence can be presented via
stretched exponents (Eq 3). And in the most general case the 
behavior become rather complex (Eq.3), where G cannot be 
expressed analytically in some situations.

Fig.3. Types of fluorescence decays
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The original fluorescence decay 
f(t) caused by the system itself is 
distorted by the convolution with 
the excitation pulse together with 
different detector time lags (fig.4).

The extraction of the original f(t) 
by deconvolution is noise 
unstable operation and should be 
avoided. Unfortunately standard 
approaches to preliminary 
analysis (i.e. Laplace transform) 
work on deconvoluted data.

Problem DefinitionProblem Definition
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Fig.4. Experimental distortions 
of the fluorescence



Approaches to Fluorescence Data AnalysisApproaches to Fluorescence Data Analysis

The general approach to fluorescence data 
analysis is presented in fig. 1. 

Let experiments to be performed on a system 
(1) which has some unknown parameters Px. 
The result is a set of experimental data (2). 
Using a priory information about the system 
and experimental data, the model (type of the 
decay) is assumed (3). By this model the initial 
estimations of Px should be made (4). After 
that the precise parameters determination can 
be performed using, for instance, simulation-
based fitting technique [2].

The simulation-based fitting approach is 
illustrated in fig. 2. Again the experiment on the 
system (1) provides some experimental data 
(2). Then estimation of Px (3) is used in the 
model (4) to produce simulated data (5). The 
fitting algorithm (6) modifies estimation of Px to 
minimize differences between simulated and 
experimental data. The process iteratively 
continues till the stop criterion is reached.

Obviously, the model selection and initial 
estimation are the key points in fluorescence 
data analysis.

Fig.1. General scheme of fluorescence data analysis
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Fig.2. Precise parameters determination via fitting



Artificial Neural Network ApproachArtificial Neural Network Approach

Artificial neural networks (ANN) are widely used 
for the analysis of distorted data. The key 
features of ANN are their noise stability, ability 
to be trained directly on experimental data (with 
all their distortions) and generalization [3]. 

The general scheme of ANN approach to the 
inverse problem solution is showed in fig.5. 
Experimental system (2) can be considered as 
a “black box” transferring physical parameters 
(1) into experimental data (3). Then the data are 
utilized by an ANN to estimate the original 
values of sought parameters (4). 

ANN can be used in the same way to recognize 
the model of the fluorescence decay 
(exponential, stretched exponential, etc.)

Before analysis by ANN the decays should be 
preprocessed to reduce the dimensionality of 
the data. For example this can be performed in 
the following way. Let each decay contain 1024 
channels. Data can be reduced to 8 points by 
averaging inside intervals containing 8, 8, 16, 
32, 64, 128, 256, 512 channels (fig.6).
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Fig.5. Scheme of ANN application for data analysis

Fig.6. Preprocessing and data reduction
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Results and DiscussionResults and Discussion

Numerical ExperimentNumerical Experiment
Data: Three models were considered: 1-, 2- and 3-
exponential.  The data were simulated, convoluted with a 
smooth pulse function and distorted by noise (fig. 6). The 
training set consisted of 1000 training pairs.
ANN structure: Three layer feed-forward ANN 
(perceptron) with 8 neurons in hidden layers and three 
outputs. Preprocessed decays were given to the inputs. 
The value in the 1st, 2nd and 3rd outputs provided the 
probability of the 1-, 2- and 3-exponential models. The 
maximal probability defined the final decision about the 
model.
Training: ANN was trained using back-propagation error 
method with Levenberg-Marquartd modification in Matlab.

Model SelectionModel Selection

Fig.7. Model recognition
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The approach was tested on 1000 decays. The results are 
illustrated in fig. 8. 

The single exponential model was determined correctly 
with the probability of 98%, for two-exponential model –
94% and for three-exponential model – 92%.

The high error for three-exponential model can be 
explained by the fact that its fluorescence rate constants 
can have similar values and therefore be recognized as 1-
and 2- exponential models. 
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Initial EstimationsInitial Estimations

Fig.10. Errors distribution for three rate constants 
after analysis of noisy and convoluted data
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Results and DiscussionResults and Discussion

Numerical ExperimentNumerical Experiment
Data: Three exponential decays were considered with 
rate constants k1<k2<k3. The data were simulated, 
convoluted with a smooth pulse function and distorted by 
noise (fig. 6). The training set consisted of 2000 training 
pairs.
ANN structure: Three layer feed-forward ANN 
(perceptron) with 16 neurons in hidden layers and three 
outputs. Preprocessed decays were given to the inputs. 
The value in the 1st, 2nd and 3rd outputs provided the 
normalized estimation of k1, k2, k3. 
Training: ANN was trained using back-propagation error 
method with Levenberg-Marquartd modification in Matlab.

The approach was tested on 1000 decays. The results are 
illustrated in fig. 8. 

Three error regions were considered: <10%, 10-20% and 
20-30%. For more then 960 decays the errors in defined 
rate constants were below 20%, and for 700 decays it was 
even below 10%. 

The better prediction was obtained for the first exponential 
component with longer lifetime (smaller rate). 



ConclusionsConclusions
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Artificial neural networks are able to recognize the model of the fluorescence 
decay with high precision (average accuracy >95%) 

Artificial neural networks can be used to produce initial estimations of the 
sought parameters hidden in time-resolved fluorescence data. Average 
precision of the definition of rate constants with <10% error is ~81%

ANN can be applied to analyze complex (stretch exponential, etc) decays, in 
the convoluted form. The proposed technique is a noise stable one.


