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Time-resolved Fluorescence Spectroscopy

Introduction

The time resolved fluorescence spectroscopy is a very important experimental tool to study the
complex biomolecular objects and systems, including liquid crystals, membranes, proteins, DNA, etc. This
method provide detailed information about the structure and dynamic of those systems [1]. The analysis of
spectroscopic data may be complex because of several reasons: there could be a number of unknown
parameters in an experimental system; almost all dependencies between them and the processes taking
place are non-linear; fluorescence data are distorted by noises and inaccuracies of a registration system.
These facts impel to analyze experimental data via the multi-parametric optimization approach (fitting) [2].
For the successful application of the fitting procedure, the selected model of fluorescence must be an
adequate and the initial estimation for its parameters should be sufficiently good. Consequently, the
tasks of model recognition and initial estimations arise. This problems belong to the “inverse problems”
and therefore their solution is unstable and very much noise sensitive.

Artificial neural networks (ANN) are well-known for their robustness, noise stability and ability to
approximate any smooth function. Therefore it was decided to test their applicability to the problems of
model selection and initial estimations.

Goal

To develop a noise-stable neural network based algorithms for the model selection
(recognition) and preliminary fluorescence data analysis (parameter extraction).

Objectives
» Development of the preprocessing scheme for reduction of time-resolved fluorescence data
» Selection of the ANN structure
» Demonstration the possibility of the fluorescence model recognition by ANN
» Demonstration the possibility of the initial estimation by ANN



The fluorescence decay of a molecular ensemble depends on
lifetimes of fluorescent molecules and interactions between them.
For the simplest case of non-interacting mixture of fluorophores
with different lifetimes the decay curve can be expressed as a
sum of exponents (Eq 1). In the case of Forster type of energy
transfer between molecules the fluorescence can be presented via
stretched exponents (Eq 3). And in the most general case the
behavior become rather complex (Eq.3), where G cannot be
expressed analytically in some situations.
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The original fluorescence decay
f(t) caused by the system itself is
distorted by the convolution with
the excitation pulse together with
different detector time lags (fig.4).
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The extraction of the original f(t)
by deconvolution is noise
unstable operation and should be
avoided. Unfortunately standard
approaches to preliminary

analysis (i.e. Laplace transform)
work on deconvoluted data.

of the fluorescence
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The general approach to fluorescence data
analysis is presented in fig. 1.

Let experiments to be performed on a system
(1) which has some unknown parameters P,.
The result is a set of experimental data (2).
Using a priory information about the system
and experimental data, the model (type of the
decay) is assumed (3). By this model the initial
estimations of P, should be made (4). After
that the precise parameters determination can
be performed using, for instance, simulation-
based fitting technique [2].

The simulation-based fitting approach s
illustrated in fig. 2. Again the experiment on the
system (1) provides some experimental data
(2). Then estimation of P, (3) is used in the
model (4) to produce simulated data (5). The
fitting algorithm (6) modifies estimation of P, to
minimize differences between simulated and
experimental data. The process iteratively
continues till the stop criterion is reached.

Obviously, the model selection and initial
estimation are the key points in fluorescence
data analysis.
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Artificial neural networks (ANN) are widely used
for the analysis of distorted data. The key
features of ANN are their noise stability, ability
to be trained directly on experimental data (with
all their distortions) and generalization [3].

The general scheme of ANN approach to the
inverse problem solution is showed in fig.5.
Experimental system (2) can be considered as
a “black box” transferring physical parameters
(1) into experimental data (3). Then the data are
utilized by an ANN to estimate the original
values of sought parameters (4).

ANN can be used in the same way to recognize
the model of the fluorescence decay
(exponential, stretched exponential, etc.)

Before analysis by ANN the decays should be
preprocessed to reduce the dimensionality of
the data. For example this can be performed in
the following way. Let each decay contain 1024
channels. Data can be reduced to 8 points by
averaging inside intervals containing 8, 8, 16,
32, 64, 128, 256, 512 channels (fig.6).
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Numerical Experiment

Data: Three models were considered: 1-, 2- and 3-
exponential. The data were simulated, convoluted with a
smooth pulse function and distorted by noise (fig. 6). The
training set consisted of 1000 training pairs.

ANN structure: Three layer feed-forward ANN
(perceptron) with 8 neurons in hidden layers and three
outputs. Preprocessed decays were given to the inputs.
The value in the 1st, 2d and 3" outputs provided the
probability of the 1-, 2- and 3-exponential models. The
maximal probability defined the final decision about the
model.

Training: ANN was trained using back-propagation error
method with Levenberg-Marquartd modification in Matlab.

Results and Discussion

The approach was tested on 1000 decays. The results are
illustrated in fig. 8.

The single exponential model was determined correctly
with the probability of 98%, for two-exponential model —
94% and for three-exponential model — 92%.

The high error for three-exponential model can be
explained by the fact that its fluorescence rate constants
can have similar values and therefore be recognized as 1-
and 2- exponential models.
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Initial Estimations

Numerical Experiment

Data: Three exponential decays were considered with P ;
rate constants k,<k,<k,. The data were simulated, g
convoluted with a smooth pulse function and distorted by IES

noise (fig. 6). The training set consisted of 2000 training of
pairs. o
ANN structure: Three layer feed-forward ANN |
(perceptron) with 16 neurons in hidden layers and three
outputs. Preprocessed decays were given to the inputs.
The value in the 1st, 2nd and 3" outputs provided the

normalized estimation of k,, k,, k. Fig.9. Preliminary parameter estimation
Training: ANN was trained using back-propagation error
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Conclusions

» Artificial neural networks are able to recognize the model of the fluorescence
decay with high precision (average accuracy >95%)

» Artificial neural networks can be used to produce initial estimations of the
sought parameters hidden in time-resolved fluorescence data. Average
precision of the definition of rate constants with <10% error is ~81%

» ANN can be applied to analyze complex (stretch exponential, etc) decays, in
the convoluted form. The proposed technigue is a noise stable one.
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